Total Pages-7

(Set-1)

M. Tech-2nd (TE)

Urban Transportation System Planning

Full Marks: 70

Time: 3 hours

Attempt Q. No. 1 and any five questions from the rest

The figures in the right-hand margin indicate marks

- 1. Attempt all of the following questions: 2×10
 - (a) What do you understand by model?
 - (b) What are the sets of basic information a trip should contain?
 - (c) Show under what condition the solution of a user-equilibrium traffic assignment tends to the solution of a system optimal traffic assignment?
 - (d) In a transportation demand-supply interaction, why the demand is called a derived one?

(Turn Over)

May - 2016

(2)

- (Set-1) (e) Give instances, when and how the link -performance function becomes a multivariate function of flow level.
 - (f) What are the parameters of household characteristics likely to influence trip production of a zone?
 - (g) What do you understand by generalised cost of travel? igrom broat-new sit in assign of
 - (h) What do you understand by basic-employment in Lowry's land-Use model?
 - (i) What do you understand by value of travel (b) What are the sets of basic informa? smit trip
 - (j) Draw a flow-chart of Lowry Land use model.
- what condition the solution 2. (a) In a travel survey conducted among 20 passengers travelling between two cities A and B, it was observed that 6 chose bus and 14 chose car. Suppose, that travel cost for bus and car remained same for all 20 passengers and they were 47 and 38 units

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1)

(Continued)

respectively. Lets assume the deterministic utility function of mode choice models as under an hammach toward government in

$V_{\text{Mode}} = \alpha.\text{TravelCost}_{\text{Mode}}$

Calculate the travel demand by bus and car, if total passenger demand is 100 and travel cost between cities A and B by bus and car are 35 and 25 units respectively?

- (b) Draw the flow diagram of four-step travel demand model.
- 3. (a) Explain the demand-supply interaction with reference to urban transport system.
 - (b) Draw and explain the transit network representation.
- 4. (a) Explain a model of trip-end type model split model. Under what circumstances, the trip-end type model is developed?
 - (b) What are the basic properties of a trip -distribution model?

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1) (Turn Over)

- 5. (a) Explain, how the various levels of decision of a trip-maker for making a trip are mapped in a four-step travel demand modelling.
 - (b) Describe with an example, how various alternatives of a transportation project are evaluated?
- 6. (a) Show how the two different types of constraint are incorporated in a doubly-constrained Gravity Model of trip-distribution.
 - (b) The Table 1 shows the trip production rate of various household sizes of a particular zone. Table 2 shows the forecasted number of households of various household sizes of the same zone. Forecast the trip production in that zone.

Table 1	Amir as I for muranfu	ta sea an	Auto Ownership		
	SHEISHHISHIS IS	AND THE	0	1	2+
	Household Size	1	2.1	2.4	2.4
	c properties of	2	2.4	2.8	3.4
	selection and	3+	2.7	3-1	3.9

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1) (Continued)

Table 2	and American	podacti	Auto	Owner	ship
	55.405.000.000	dA zb	0	1	2+
	Household Size	1	25	125	3
	140 330	2	32	175	254
	300 1.270	3+	10	89	512

7. (a) Determine the trip distribution through one-iteration using the following model:

$$T_{t-j} = P_t \left[\frac{A_j F_{ij} K_{ij}}{\sum_{j=1}^n A_j F_{ij} K_{ij}} \right]$$

Where,

 T_{i-j} = Number of trips from zone i to zone j

 P_i = Total number of trips produced in zone i

 A_j = Total number of trips attracted to zone j

 F_{ij} = Friction factor (which is generally an inverse function of travel time)

 K_{ij} = Socio-economic adjustment factor for interchange ij, say = 1 for all zones.

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1) (Turn Over)

Table 3. Trip Production and Attraction for a Three-Zone Study Area

Zone	1	2	3
Trip Production	140	330	280
Trip Attraction	300	270	180

Table 4. Travel Time between Zones

. . .

Zone	1	2	3
1	5	2	3
2	2	6	6
3	3	6	5

Table 5. Travel Time vs Friction factor

Travel Time (min.)	Friction Factor F	
1 aros	82	
s egin te2 admun len	52	
zone/ 8	50	
ction factor 4 shich is	41	
and to not 5 and personni	39	
6	26	
r'ognide 7 Ini bet nota	20	
8	13	

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1)

(Continued)

- (b) What are the input vector considered in Lowry Model and what are calculated inside of the Lowry model?
- 8. (a) Mathematically describe the user-equilibrium and system-optimal traffic assignment. 3+3
 - (b) Discuss the merit and demerit of growth factor and synthetic trip distribution model. 4

M.Tech-2nd (TE)/Urban Transportation System Planning (Set-1)

BE-100